数据集

数据集

符合 TidyData 规范的且已聚合的数据源, 遵循变量为列、观测为行的原则

数据维度与指标配置

1{
2  "chartType": "columnParallel",
3  "dataset": [
4    { "date": "2019", "region": "east", "profit": 10, "sales": 20 },
5    { "date": "2020", "region": "east", "profit": 30, "sales": 60 },
6    { "date": "2021", "region": "east", "profit": 30, "sales": 60 },
7    { "date": "2022", "region": "east", "profit": 50, "sales": 100 },
8    { "date": "2023", "region": "east", "profit": 40, "sales": 80 },
9
10    { "date": "2019", "region": "north of east", "profit": 10, "sales": 20 },
11    { "date": "2020", "region": "north of east", "profit": 30, "sales": 60 },
12    { "date": "2021", "region": "north of east", "profit": 30, "sales": 60 },
13    { "date": "2022", "region": "north of east", "profit": 50, "sales": 100 },
14    { "date": "2023", "region": "north of east", "profit": 40, "sales": 80 }
15  ],
16  "measures": [
17    { "id": "profit", "alias": "利润" },
18    { "id": "sales", "alias": "销售量" }
19  ],
20  "dimensions": [
21    { "id": "date", "alias": "日期", "location": "dimension" },
22    { "id": "region", "alias": "区域", "location": "dimension" }
23  ]
24}

自动选择

若未配置 dimensionsmeasures , 会取前100条数据, 进行如下判断:

  • 如果一个字段存在 number 类型的数据, 则将其设置为指标
  • 如果一个字段存在 string 类型的数据, 并且字段未被设置为指标, 则将其设置为维度
1{
2  "chartType": "columnParallel",
3  "dataset": [
4    { "date": "2019", "region": "east", "profit": 10, "sales": 20 },
5    { "date": "2020", "region": "east", "profit": 30, "sales": 60 },
6    { "date": "2021", "region": "east", "profit": 30, "sales": 60 },
7    { "date": "2022", "region": "east", "profit": 50, "sales": 100 },
8    { "date": "2023", "region": "east", "profit": 40, "sales": 80 },
9
10    { "date": "2019", "region": "north of east", "profit": 10, "sales": 20 },
11    { "date": "2020", "region": "north of east", "profit": 30, "sales": 60 },
12    { "date": "2021", "region": "north of east", "profit": 30, "sales": 60 },
13    { "date": "2022", "region": "north of east", "profit": 50, "sales": 100 },
14    { "date": "2023", "region": "north of east", "profit": 40, "sales": 80 }
15  ]
16}

单指标 零维度

1{
2  "chartType": "columnParallel",
3  "dataset": [{ "profit": 10 }]
4}

单指标 单维度

1{
2  "chartType": "columnParallel",
3  "dataset": [
4    { "date": "2019", "profit": 10 },
5    { "date": "2020", "profit": 30 },
6    { "date": "2021", "profit": 30 },
7    { "date": "2022", "profit": 50 },
8    { "date": "2023", "profit": 40 }
9  ]
10}

单指标 多维度

1{
2  "chartType": "columnParallel",
3  "dataset": [
4    { "date": "2019", "region": "east", "city": "A", "profit": 10 },
5    { "date": "2019", "region": "east", "city": "B", "profit": 30 },
6    { "date": "2019", "region": "east", "city": "C", "profit": 30 },
7    { "date": "2019", "region": "east", "city": "D", "profit": 50 },
8    { "date": "2019", "region": "east", "city": "E", "profit": 40 },
9
10    { "date": "2020", "region": "north of east", "city": "A", "profit": 10 },
11    { "date": "2020", "region": "north of east", "city": "B", "profit": 30 },
12    { "date": "2020", "region": "north of east", "city": "C", "profit": 30 },
13    { "date": "2020", "region": "north of east", "city": "D", "profit": 50 },
14    { "date": "2020", "region": "north of east", "city": "E", "profit": 40 }
15  ]
16}

多指标 零维度

1{
2  "chartType": "columnParallel",
3  "dataset": [{ "profit": 1, "sales": 2, "discount": 0.1 }]
4}

多指标 单维度

1{
2  "chartType": "columnParallel",
3  "dataset": [
4    { "date": "2019", "profit": 10, "sales": 20, "discount": 0.1 },
5    { "date": "2020", "profit": 30, "sales": 60, "discount": 0.1 },
6    { "date": "2021", "profit": 30, "sales": 60, "discount": 0.1 },
7    { "date": "2022", "profit": 50, "sales": 100, "discount": 0.1 },
8    { "date": "2023", "profit": 40, "sales": 80, "discount": 0.1 }
9  ]
10}

多指标 多维度

1{
2  "chartType": "columnParallel",
3  "dataset": [
4    { "date": "2019", "region": "east", "city": "A", "profit": 10, "sales": 20, "discount": 0.1 },
5    { "date": "2019", "region": "east", "city": "B", "profit": 30, "sales": 60, "discount": 0.1 },
6    { "date": "2019", "region": "east", "city": "C", "profit": 30, "sales": 60, "discount": 0.1 },
7    { "date": "2019", "region": "east", "city": "D", "profit": 50, "sales": 100, "discount": 0.1 },
8    { "date": "2019", "region": "east", "city": "E", "profit": 40, "sales": 80, "discount": 0.1 },
9
10    { "date": "2020", "region": "north of east", "city": "A", "profit": 10, "sales": 20, "discount": 0.1 },
11    { "date": "2020", "region": "north of east", "city": "B", "profit": 30, "sales": 60, "discount": 0.1 },
12    { "date": "2020", "region": "north of east", "city": "C", "profit": 30, "sales": 60, "discount": 0.1 },
13    { "date": "2020", "region": "north of east", "city": "D", "profit": 50, "sales": 100, "discount": 0.1 },
14    { "date": "2020", "region": "north of east", "city": "E", "profit": 40, "sales": 80, "discount": 0.1 }
15  ]
16}