#数据集
数据集
符合 TidyData 规范的且已聚合的数据源, 遵循变量为列、观测为行的原则
#数据维度与指标配置
{
"chartType": "columnParallel",
"dataset": [
{ "date": "2019", "region": "east", "profit": 10, "sales": 20 },
{ "date": "2020", "region": "east", "profit": 30, "sales": 60 },
{ "date": "2021", "region": "east", "profit": 30, "sales": 60 },
{ "date": "2022", "region": "east", "profit": 50, "sales": 100 },
{ "date": "2023", "region": "east", "profit": 40, "sales": 80 },
{ "date": "2019", "region": "north of east", "profit": 10, "sales": 20 },
{ "date": "2020", "region": "north of east", "profit": 30, "sales": 60 },
{ "date": "2021", "region": "north of east", "profit": 30, "sales": 60 },
{ "date": "2022", "region": "north of east", "profit": 50, "sales": 100 },
{ "date": "2023", "region": "north of east", "profit": 40, "sales": 80 }
],
"measures": [
{ "id": "profit", "alias": "利润" },
{ "id": "sales", "alias": "销售量" }
],
"dimensions": [
{ "id": "date", "alias": "日期" },
{ "id": "region", "alias": "区域" }
]
}#自动选择
若未配置 dimensions 和 measures 会取前100条数据, 进行如下判断:
- 如果一个字段存在
number类型的数据, 则将其设置为指标 - 如果一个字段存在
string类型的数据, 并且字段未被设置为指标, 则将其设置为维度
{
"chartType": "columnParallel",
"dataset": [
{ "date": "2019", "region": "east", "profit": 10, "sales": 20 },
{ "date": "2020", "region": "east", "profit": 30, "sales": 60 },
{ "date": "2021", "region": "east", "profit": 30, "sales": 60 },
{ "date": "2022", "region": "east", "profit": 50, "sales": 100 },
{ "date": "2023", "region": "east", "profit": 40, "sales": 80 },
{ "date": "2019", "region": "north of east", "profit": 10, "sales": 20 },
{ "date": "2020", "region": "north of east", "profit": 30, "sales": 60 },
{ "date": "2021", "region": "north of east", "profit": 30, "sales": 60 },
{ "date": "2022", "region": "north of east", "profit": 50, "sales": 100 },
{ "date": "2023", "region": "north of east", "profit": 40, "sales": 80 }
]
}#单指标 零维度
{
"chartType": "columnParallel",
"dataset": [{ "profit": 10 }]
}#单指标 单维度
{
"chartType": "columnParallel",
"dataset": [
{ "date": "2019", "profit": 10 },
{ "date": "2020", "profit": 30 },
{ "date": "2021", "profit": 30 },
{ "date": "2022", "profit": 50 },
{ "date": "2023", "profit": 40 }
]
}#单指标 多维度
{
"chartType": "columnParallel",
"dataset": [
{ "date": "2019", "region": "east", "city": "A", "profit": 10 },
{ "date": "2019", "region": "east", "city": "B", "profit": 30 },
{ "date": "2019", "region": "east", "city": "C", "profit": 30 },
{ "date": "2019", "region": "east", "city": "D", "profit": 50 },
{ "date": "2019", "region": "east", "city": "E", "profit": 40 },
{ "date": "2020", "region": "north of east", "city": "A", "profit": 10 },
{ "date": "2020", "region": "north of east", "city": "B", "profit": 30 },
{ "date": "2020", "region": "north of east", "city": "C", "profit": 30 },
{ "date": "2020", "region": "north of east", "city": "D", "profit": 50 },
{ "date": "2020", "region": "north of east", "city": "E", "profit": 40 }
]
}#多指标 零维度
{
"chartType": "columnParallel",
"dataset": [{ "profit": 1, "sales": 2, "discount": 0.1 }]
}#多指标 单维度
{
"chartType": "columnParallel",
"dataset": [
{ "date": "2019", "profit": 10, "sales": 20, "discount": 0.1 },
{ "date": "2020", "profit": 30, "sales": 60, "discount": 0.1 },
{ "date": "2021", "profit": 30, "sales": 60, "discount": 0.1 },
{ "date": "2022", "profit": 50, "sales": 100, "discount": 0.1 },
{ "date": "2023", "profit": 40, "sales": 80, "discount": 0.1 }
]
}#多指标 多维度
{
"chartType": "columnParallel",
"dataset": [
{ "date": "2019", "region": "east", "city": "A", "profit": 10, "sales": 20, "discount": 0.1 },
{ "date": "2019", "region": "east", "city": "B", "profit": 30, "sales": 60, "discount": 0.1 },
{ "date": "2019", "region": "east", "city": "C", "profit": 30, "sales": 60, "discount": 0.1 },
{ "date": "2019", "region": "east", "city": "D", "profit": 50, "sales": 100, "discount": 0.1 },
{ "date": "2019", "region": "east", "city": "E", "profit": 40, "sales": 80, "discount": 0.1 },
{ "date": "2020", "region": "north of east", "city": "A", "profit": 10, "sales": 20, "discount": 0.1 },
{ "date": "2020", "region": "north of east", "city": "B", "profit": 30, "sales": 60, "discount": 0.1 },
{ "date": "2020", "region": "north of east", "city": "C", "profit": 30, "sales": 60, "discount": 0.1 },
{ "date": "2020", "region": "north of east", "city": "D", "profit": 50, "sales": 100, "discount": 0.1 },
{ "date": "2020", "region": "north of east", "city": "E", "profit": 40, "sales": 80, "discount": 0.1 }
]
}